

☑ yangjy20@mails.tsinghua.edu.cn • 😵 techicoco.net

RESEARCH INTERESTS

My research is primarily focused on developing visual analysis methods to assist clinicians in processing and understanding medical data, including images, point cloud and radiology reports. I have proposed methods that exploit task correlations in common medical processing tasks, such as generation, segmentation, classification, and localization. With the emergence of large models, I am currently working on adapting foundation models to various medical segmentation tasks with few-shot samples, combining reinforcement learning and active learning. My subject areas encompass medical imaging modalities including MRI, CT, X-ray, and ultrasound, as well as anatomical regions including the brain, heart, liver, chest, and lung among others.

EDUCATION

Tsinghua University

Shenzhen, CHINA

Sep. 2020 - Present

- Tsinghua-Berkeley Shenzhen Institute (TBSI)
- Fifth-year Ph.D. student (Expected: Mar. 2026)
- Advisor: Prof. Yang Li, yangli@sz.tsinghua.edu.cn.

University of Electronic Science and Technology of China

Chengdu, CHINA

Sep. 2016 - Jun. 2020

- School of Computer Science
- Yingcai Honors College of UESTC

MAIN PROJECTS (FIRST AUTHOR)

"Hierarchical Feature Learning for Medical Point Clouds via State Space Model" (Early Accepted) Guoqing Zhang, Jingyun Yang, Yang Li. MICCAI - 2025

- Proposed an SSM-based hierarchical feature learning framework for medical point cloud understanding.
- Constructed a large-scale medical point cloud dataset (MedPointS) for anatomy classification, completion, and segmentation.

"Federated Auxiliary Learning for Few-shot Generalization on Medical Data"

Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li.

Under Review - 2025

 Introduced a federated auxiliary learning paradigm to leverage existing clients for newly joined few-shot medical segmentation tasks.

"Learning What is Worth Learning: Active Domain Adaptation for Multi-modal Gross Tumor Volume Segmentation" (Spotlight)

Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li.

HAIC - 2025

- Proposed a source-free domain adaptation framework with an active query strategy for advancing gross tumor volume segmentation on multi-modal data.
- "Adapting Foundation Model for Few-Shot Medical Image Segmentation: Actively and Sequentially" (Oral) ISBI - 2025 Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li.
- Proposed a novel framework that incorporates auxiliaries to adapt foundation models to various medical segmentation tasks in a single-round fine-tuning.
- Designed an efficient reward function and applied the multi-armed bandit algorithm to dynamic data selection through the framework.

"Graph-guided Sequential Transfer for Medical Image Segmentation" (IEEE-Student Award) Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li.

BIBM - 2024

- Proposed a graph-based sequential transfer path selection strategy to enhance target task performance.
- Identified the most informative and representative source task for the given target task by fully exploring the characteristics of medical image segmentation tasks.

"Selecting the Best Sequential Transfer Path for Medical Image Segmentation with Limited Labeled Data"

Jingyun Yang, Jingge Wang, Guoqing Zhang, Yang Li.

ICONIP - 2024

- Proposed a task affinity estimation metric to identify the most beneficial source tasks.
- Applied a sequential transfer learning pipeline tailored for medical image processing.

"Investigating Consistency Constraints in Heterogeneous Multi-task Learning for Medical Image Processing"

Jingyun Yang, Yicong Li, Yang Tan, Heng Liu, Yang Li.

BIBM - 2023

• Introduced a bi-level multi-task learning consistency regularization scheme: task-level output consistency and feature-level representation consistency, addressing the problem of inconsistent task-specific predictions.

"Joint PVL Detection and Manual Ability Classification Using Semi-supervised Multi-task Learning"

Jingyun Yang, Jie Hu, Yicong Li, Heng Liu, Yang Li.

MICCAI - 2021

- Exploited the correlation between PVL lesion segmentation and manual ability classification to improve the identification performance of both tasks.
- Proposed a semi-supervised multi-task learning framework to jointly learn from heterogeneous datasets.

HONORS AND AWARDS

- IEEE BIBM'24 Stuent Travel Award, IEEE BIBM 2024. Dec. 2024.
- Second Prize, Tsinghua University Department-level Excellent Scholarship. Oct. 2024,2022.
- Academic Scholarship, TBSI Leaders of Tomorrow Scholarships. 2023,2022,2021.
- Honorable Mention (Top 40%), 2018 COMAP's Mathematical Contest in Modeling® (MCM). Feb. 2018.
- First Prize (Only one team), 2018 UESTC's Mathematical Contest in Modeling. Dec. 2017.
- Global 81st Place (Top 4%), IEEEXtreme Programming Competition 11.0. Oct. 2017.

SKILLS

Language TOFEL 105, CET-4 621, CET-6 605

Programming Python, C/C++, JAVA, Javascript, Verilog, VHDL, Matlab/Octave

Protocols & APIs XML, JSON, RESTful, GraphQL

Library Pytorch, TensorFlow (Keras), Qt, scikit-learn, SciPy (NumPy, Matplotlib, pandas, ...)

Frameworks React, React Native, Vue.js

Tools LATEX, git, ssh, vim, Xilinx Vivado, Kali Linux, curl, Keybase, ...

Databases MySQL, MongoDB, Redis

Platforms Windows, Linux, Docker, Desktop, Web, iOS/Android

LINKS

Blog https://yakult.fun

GitHub https://github.com/Hiyoochan

Codeforces https://codeforces.com/profile/kotete

Google Scholar Jingyun Yang

